e-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem

نویسندگان

  • Marcela Zuluaga
  • Andreas Krause
  • Markus Püschel
چکیده

In many fields one encounters the challenge of identifying out of a pool of possible designs those that simultaneously optimize multiple objectives. In many applications an exhaustive search for the Pareto-optimal set is infeasible. To address this challenge, we propose the -Pareto Active Learning ( -PAL) algorithm which adaptively samples the design space to predict a set of Pareto-optimal solutions that cover the true Pareto front of the design space with some granularity regulated by a parameter . Key features of -PAL include (1) modeling the objectives as draws from a Gaussian process distribution to capture structure and accommodate noisy evaluation; (2) a method to carefully choose the next design to evaluate to maximize progress; and (3) the ability to control prediction accuracy and sampling cost. We provide theoretical bounds on -PAL’s sampling cost required to achieve a desired accuracy. Further, we perform an experimental evaluation on three real-world data sets that demonstrate -PAL’s effectiveness; in comparison to the state-of-the-art active learning algorithm PAL, -PAL reduces the amount of computations and the number of samples from the design space required to meet the user’s desired level of accuracy. In addition, we show that -PAL improves significantly over a state-of-the-art multi-objective optimization method, saving in most cases 30% to 70% evaluations to achieve the same accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Power Filter Design by a Novel Approach of Multi-Objective Optimization

This paper presents an innovative active power filter design method to simultaneously compensate the current harmonics and reactive power of a nonlinear load. The power filter integrates a passive power filter which is a RL low-pass filter placed in series with the load, and an active power filter which comprises an RL in series with an IGBT based voltage source converter. The filter is assumed...

متن کامل

Optimal Location and Sizing of Distributed Generations in Distribution Networks Considering Load Growth using Modified Multi-objective Teaching Learning Based Optimization Algorithm

Abstract: This paper presents a modified method based on teaching learning based optimization algorithm to solve the problem of the single- and multi-objective optimal location of distributed generation units to cope up the load growth in the distribution network .Minimizing losses, voltage deviation, energy cost and improved voltage stability are the objective functions in this problem. Load g...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

AN EXTENSION TO STOCHASTIC TIME-COST TRADE-OFF PROBLEM OPTIMIZATION WITH DISCOUNTED CASH FLOW

In this paper, an efficient multi-objective model is proposed to solve time-cost trade off problem considering cash flows. The proposed multi-objective meta-heuristic is based on Ant colony optimization and is called Non Dominated Archiving Ant Colony Optimization (NAACO). The significant feature of this work is consideration of uncertainties in time, cost and more importantly interest rate. A ...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016